Tag Archives: GMainContext

Instrumenting the GLib main loop with Dunfell

tl;dr: Visualise your main context and sources using Dunfell. Feedback and ideas welcome.

At the DX hackfest, I’ve been working on a new tool for instrumenting and visualising the behaviour of the GLib main context (or main contexts) in your program.

Screenshot from 2016-01-29 11-17-35

It’s called Dunfell (because I’m a sucker for hills) and at a high level it works by using SystemTap to record various GMainContext interactions in your program, saving them to a log file. The log file can then be examined using a viewer program.

The source is available on GitLab or GitHub because I still haven’t decided which is better.

In the screenshot above, each vertical line is a thread, each blue box is one dispatch phase of the main context which is currently running on that thread, each orange blob is a new GSource being created, and the green blob is a GSource which has been selected for closer inspection.

At the moment, it requires a couple of GLib patches to add some more SystemTap probe points, and it also requires a recent version of GTK+. It needs SystemTap, and I’ve only tested it on Fedora, so it might need some patching to work with the SystemTap installed on other distributions.

Screenshot from 2016-01-29 11-57-39

This screenshot is of a trace of the buffered-input-stream test from GIO, showing I/O callbacks being made across threads as idle source callbacks.

More visualisation ideas are welcome! At the moment, what Dunfell draws is quite simplistic. I hope it will be able to solve various common debugging problems eventually but suggestions for ways to do this intuitively, or for other problems to visualise, are welcome. Here are the use cases I was initially thinking about (from the README):

  • Detect GSources which are never added to a GMainContext.
  • Detect GSources which are dispatched too often (i.e. every main context iteration).
  • Detect GSources whose dispatch function takes too long (and hence blocks the main context).
  • Detect GSources which are never removed from their GMainContext after being dispatched (but which are never dispatched again).
  • Detect GMainContexts which have GSources attached or (especially) events pending, but which aren’t being iterated.
  • Monitor the load on each GMainContext, such as how many GSources it has attached, and how many events are processed each iteration.
  • Monitor ongoing asynchronous calls and GTasks, giving insight into their nesting and dependencies.
  • Monitor unfinished or stalled asynchronous calls.
  • Allow users to record logs to send to the developers for debugging on a different machine. The users may have to install additional software to record these logs (some component of Dunfell, plus its dependencies), but should not have to recompile or otherwise modify the program being debugged.
  • Work with programs which purely use GLib, through to programs which use GLib, GIO and GTK+.
  • Allow visualisation of this data, both in a standalone program, and in an IDE such as GNOME Builder.
  • Allow visualising differences between two traces.
  • Minimise runtime overhead of logging a program, to reduce the risk of disturbing race conditions by enabling logging.
  • Connecting to an already-running program is not a requirement, since by the time you’ve decided there’s a problem with a program, it’s already in the wrong state.

A detailed look at GSource

Another post in this sporadic mini-series on GMainContext, this time looking at GSource and writing your own type of event source. This post is actually adapted from a page I wrote about it for developer.gnome.org, which includes fully-compilable and unit tested source code;  future tweaks and clarifications can be found there. If you find a problem, please file a bug.

tl;dr: Write a custom GSource if you have a non-file-descriptor-based event source to integrate with a GMainContext. It’s a matter of writing a few virtual functions.

What is GSource?

A GSource is an expected event with an associated callback function which will be invoked when that event is received. An event could be a timeout or data being received on a socket, for example.

GLib contains various types of GSource, but also allows applications to define their own, allowing custom events to be integrated into the main loop.

The structure of a GSource and its virtual functions are documented in detail in the GLib API reference.

A message queue source

As a running example, a message queue source will be used which dispatches its callback whenever a message is enqueued to a queue internal to the source (potentially from another thread).

This type of source is useful for efficiently transferring large numbers of messages between main contexts. The alternative is transferring each message as a separate idle GSource using g_source_attach(). For large numbers of messages, this means a lot of allocations and frees of GSources.

Structure

Firstly, a structure for the source needs to be declared. This must contain a GSource as its parent, followed by the private fields for the source: the queue and a function to call to free each message once finished with.

typedef struct {
  GSource         parent;
  GAsyncQueue    *queue;  /* owned */
  GDestroyNotify  destroy_message;
} MessageQueueSource

Prepare function

Next, the prepare function for the source must be defined. This determines whether the source is ready to be dispatched. As this source is using an in-memory queue, this can be determined by checking the queue’s length: if there are elements in the queue, the source can be dispatched to handle them.

return (g_async_queue_length (message_queue_source->queue) > 0);

Check function

As this source has no file descriptors, the prepare and check functions essentially have the same job, so a check function is not needed. Setting the field to NULL in GSourceFuncs bypasses the check function for this source type.

Dispatch function

For this source, the dispatch function is where the complexity lies. It needs to dequeue a message from the queue, then pass that message to the GSource’s callback function. No messages may be queued: even through the prepare function returned true, another source wrapping the same queue may have been dispatched in the mean time and taken the final message from the queue. Further, if no callback has been set for the GSource (which is allowed), the message must be destroyed and silently dropped.

If both a message and callback are set, the callback can be invoked on the message and its return value propagated as the return value of the dispatch function. This is FALSE to destroy the GSource and TRUE to keep it alive, just as for GSourceFunc — these semantics are the same for all dispatch function implementations.

/* Pop a message off the queue. */
message = g_async_queue_try_pop (message_queue_source->queue);

/* If there was no message, bail. */
if (message == NULL)
  {
    /* Keep the source around to handle the next message. */
    return TRUE;
  }

/* @func may be %NULL if no callback was specified.
 * If so, drop the message. */
if (func == NULL)
  {
    if (message_queue_source->destroy_message != NULL)
      {
        message_queue_source->destroy_message (message);
      }

    /* Keep the source around to consume the next message. */
    return TRUE;
  }

return func (message, user_data);

Callback functions

The callback from a GSource does not have to have type GSourceFunc. It can be whatever function type is called in the source’s dispatch function, as long as that type is sufficiently documented.

Normally, g_source_set_callback() is used to set the callback function for a source instance. With its GDestroyNotify, a strong reference can be held to keep an object alive while the source is still alive:

g_source_set_callback (source, callback_func,
                       g_object_ref (object_to_strong_ref),
                       (GDestroyNotify) g_object_unref);

However, GSource has a layer of indirection for retrieving this callback, exposed as g_source_set_callback_indirect(). This allows GObject to set a GClosure as the callback for a source, which allows for sources which are automatically destroyed when an object is finalized — a weak reference, in contrast to the strong reference above:

g_source_set_closure (source,
                      g_cclosure_new_object (callback_func,
                                             object_to_weak_ref));

It also allows for a generic, closure-based ‘dummy’ callback, which can be used when a source needs to exist but no action needs to be performed in its callback:

g_source_set_dummy_callback (source);

Constructor

Finally, the GSourceFuncs definition of the GSource can be written, alongside a construction function. It is typical practice to expose new source types simply as GSources, not as the subtype structure; so the constructor returns a GSource*.

The example constructor here also demonstrates use of a child source to support cancellation conveniently. If the GCancellable is cancelled, the application’s callback will be dispatched and can check for cancellation. (The application code will need to make a pointer to the GCancellable available to its callback, as a field of the callback’s user data set in g_source_set_callback()).

GSource *
message_queue_source_new (GAsyncQueue    *queue,
                          GDestroyNotify  destroy_message,
                          GCancellable   *cancellable)
{
  GSource *source;  /* alias of @message_queue_source */
  MessageQueueSource *message_queue_source;  /* alias of @source */

  g_return_val_if_fail (queue != NULL, NULL);
  g_return_val_if_fail (cancellable == NULL ||
                        G_IS_CANCELLABLE (cancellable), NULL);

  source = g_source_new (&message_queue_source_funcs,
                         sizeof (MessageQueueSource));
  message_queue_source = (MessageQueueSource *) source;

  /* The caller can overwrite this name with something more useful later. */
  g_source_set_name (source, "MessageQueueSource");

  message_queue_source->queue = g_async_queue_ref (queue);
  message_queue_source->destroy_message = destroy_message;

  /* Add a cancellable source. */
  if (cancellable != NULL)
    {
      GSource *cancellable_source;

      cancellable_source = g_cancellable_source_new (cancellable);
      g_source_set_dummy_callback (cancellable_source);
      g_source_add_child_source (source, cancellable_source);
      g_source_unref (cancellable_source);
    }

  return source;
}

Complete example

The complete source code is available in gnome-devel-docs’ git repository, along with unit tests.

Further examples

Sources can be more complex than the example given above. In libnice, a custom GSource is needed to poll a set of sockets which changes dynamically. The implementation is given as ComponentSource in component.c and demonstrates a more complex use of the prepare function.

Another example is a custom source to interface GnuTLS with GLib in its GTlsConnection implementation. GTlsConnectionGnutlsSource synchronizes the main thread and a TLS worker thread which performs the blocking TLS operations.

Berlin DX hackfest and Clang

Last week I was in Berlin at the GNOME DX hackfest. My goal for the hackfest was to do further work on the fledgling gnome-clang, and work out ways of integrating it into GNOME. There were several really fruitful discussions about GIR, static analysis, Clang ASTs, and integration into Builder which have really helped flesh out my plans for gnome-clang.

The idea we have settled on is to use static analysis more pervasively in the GNOME build process. I will be looking into setting up a build bot to do static analysis on all GNOME modules, with the dual aims of catching bugs and improving the static analyser. Eventually I hope the analysis will become fast enough and accurate enough to be enabled on developers’ machines — but that’s a while away yet.

(For those who have no idea what gnome-clang is: it’s a plugin for the Clang static analyser I’ve been working on, which adds GLib- and GObject-specific checks to the static analysis process.)

One key feature I was working on throughout the hackfest was support for GVariant format string checking, which has now landed in git master. This will automatically check variadic parameters against a static GVariant format string in calls to g_variant_new(), g_variant_get() and other similar methods.

For example, this can statically catch when you forget to add one of the elements:

/*
 * Expected a GVariant variadic argument of type ‘int’ but there wasn’t one.
 *         floating_variant = g_variant_new ("(si)", "blah");
 *                                           ^
 */
{
	floating_variant = g_variant_new ("(si)", "blah");
}

Or the inevitable time you forget the tuple brackets:

/*
 * Unexpected GVariant format strings ‘i’ with unpaired arguments. If using multiple format strings, they should be enclosed in brackets to create a tuple (e.g. ‘(si)’).
 *         floating_variant = g_variant_new ("si", "blah", 56);
 *                                           ^
 */
{
	floating_variant = g_variant_new ("si", "blah", 56);
}

After Zeeshan did some smoketesting of it (and I fixed the bugs he found), I think gnome-clang is ready for slightly wider usage. If you’re interested, please install it and try it out! Instructions are on its home page. Let me know if you have any problems getting it running — I want it to be as easy to use as possible.

Another topic I discussed with Ryan and Christian at the hackfest was the idea of a GMainContext visualiser and debugger. I’ve got some ideas for this, and will hopefully find time to work on them in the near future.

Huge thanks to Chris Kühl and Endocode for the use of their offices and their unrivalled hospitality. Thanks to the GNOME Foundation for kindly sponsoring my accommodation; and thanks to my employer, Collabora, for letting me take community days to attend the hackfest.

Ensuring functions are called in the right context

This article has been tweaked and upstreamed to developer.gnome.org. The original is kept below, but future updates will be made there. If you find a problem, please file a bug.

Continuing in this fledgling series of examining GLib’s GMainContext, this post looks at ensuring that functions are called in the right main context when programming with multiple threads.

tl;dr: Use g_main_context_invoke_full() or GTask. See the end of the post for some guidelines about multi-threaded programming using GLib and main contexts.

To begin with, what is ‘the right context’? Taking a multi-threaded GLib program, let’s assume that each thread has a single GMainContext running in a main loop — this is the thread default main context.((Why use main contexts? A main context effectively provides a work or message queue for a thread — something which the thread can periodically check to determine if there is work pending from another thread. It’s not possible to pre-empt a thread’s execution without using hideous POSIX signalling). I’m ignoring the case of non-default contexts, but their use is similar.)) So ‘the right context’ is the one in the thread you want a function to execute in. For example, if I’m doing a long and CPU-intensive computation I will want to schedule this in a background thread so that it doesn’t block UI updates from the main thread. The results from this computation, however, might need to be displayed in the UI, so some UI update function has to be called in the main thread once the computation’s complete. Furthermore, if I can limit a function to being executed in a single thread, it becomes easy to eliminate the need for locking a lot of the data it accesses((Assuming that other threads are implemented similarly and hence most data is accessed by a single thread, with threads communicating by message passing, allowing each thread to update its data at its leisure.)), which makes multi-threaded programming a whole lot simpler.

For some functions, I might not care which context they’re executed in, perhaps because they’re asynchronous and hence do not block the context. However, it still pays to be explicit about which context is used, since those functions may emit signals or invoke callbacks, and for reasons of thread safety it’s necessary to know which threads those signal handlers or callbacks are going to be invoked in. For example, the progress callback in g_file_copy_async() is documented as being called in the thread default main context at the time of the initial call.

The core principle of invoking a function in a specific context is simple, and I’ll walk through it as an example before demonstrating the convenience methods which should actually be used in practice. A GSource has to be added to the specified GMainContext, which will invoke the function when it’s dispatched. This GSource should almost always be an idle source created with g_idle_source_new(), but this doesn’t have to be the case. It could be a timeout source so that the function is executed after a delay, for example.

As described previously, this GSource will be added to the specified GMainContext and dispatched as soon as it’s ready((In the case of an idle source, this will be as soon as all sources at a higher priority have been dispatched — this can be tweaked using the idle source’s priority parameter with g_source_set_priority(). I’m assuming the specified GMainContext is being run in a GMainLoop all the time, which should be the case for the default context in a thread.)), calling the function on the thread’s stack. The source will typically then be destroyed so the function is only executed once (though again, this doesn’t have to be the case).

Data can be passed between threads in this manner in the form of the user_data passed to the GSource’s callback. This is set on the source using g_source_set_callback(), along with the callback function to invoke. Only a single pointer is provided, so if multiple bits of data need passing, they must be packaged up in a custom structure first.

Here’s an example. Note that this is to demonstrate the underlying principles, and there are convenience methods explained below which make this simpler.

/* Main function for the background thread, thread1. */
static gpointer
thread1_main (gpointer user_data)
{
	GMainContext *thread1_main_context = user_data;
	GMainLoop *main_loop;

	/* Set up the thread’s context and run it forever. */
	g_main_context_push_thread_default (thread1_main_context);

	main_loop = g_main_loop_new (thread1_main_context, FALSE);
	g_main_loop_run (main_loop);
	g_main_loop_unref (main_loop);

	g_main_context_pop_thread_default (thread1_main_context);
	g_main_context_unref (thread1_main_context);

	return NULL;
}

/* A data closure structure to carry multiple variables between
 * threads. */
typedef struct {
	gchar *some_string;  /* owned */
	guint some_int;
	GObject *some_object;  /* owned */
} MyFuncData;

static void
my_func_data_free (MyFuncData *data)
{
	g_free (data->some_string);
	g_clear_object (&data->some_object);
	g_slice_free (MyFuncData, data);
}

static void
my_func (const gchar *some_string, guint some_int,
         GObject *some_object)
{
	/* Do something long and CPU intensive! */
}

/* Convert an idle callback into a call to my_func(). */
static gboolean
my_func_idle (gpointer user_data)
{
	MyFuncData *data = user_data;

	my_func (data->some_string, data->some_int, data->some_object);

	return G_SOURCE_REMOVE;
}

/* Function to be called in the main thread to schedule a call to
 * my_func() in thread1, passing the given parameters along. */
static void
invoke_my_func (GMainContext *thread1_main_context,
                const gchar *some_string, guint some_int,
                GObject *some_object)
{
	GSource *idle_source;
	MyFuncData *data;

	/* Create a data closure to pass all the desired variables
	 * between threads. */
	data = g_slice_new0 (MyFuncData);
	data->some_string = g_strdup (some_string);
	data->some_int = some_int;
	data->some_object = g_object_ref (some_object);

	/* Create a new idle source, set my_func() as the callback with
	 * some data to be passed between threads, bump up the priority
	 * and schedule it by attaching it to thread1’s context. */
	idle_source = g_idle_source_new ();
	g_source_set_callback (idle_source, my_func_idle, data,
	                       (GDestroyNotify) my_func_data_free);
	g_source_set_priority (idle_source, G_PRIORITY_DEFAULT);
	g_source_attach (idle_source, thread1_main_context);
	g_source_unref (idle_source);
}

/* Main function for the main thread. */
static void
main (void)
{
	GThread *thread1;
	GMainContext *thread1_main_context;

	/* Spawn a background thread and pass it a reference to its
	 * GMainContext. Retain a reference for use in this thread
	 * too. */
	thread1_main_context = g_main_context_new ();
	g_thread_new ("thread1", thread1_main,
	              g_main_context_ref (thread1_main_context));

	/* Maybe set up your UI here, for example. */

	/* Invoke my_func() in the other thread. */
	invoke_my_func (thread1_main_context,
	                "some data which needs passing between threads",
	                123456, some_object);

	/* Continue doing other work. */
}

That’s a lot of code, and it doesn’t look fun. There are several points of note here:

  • This invocation is uni-directional: it calls my_func() in thread1, but there’s no way to get a return value back to the main thread. To do that, the same principle needs to be used again, invoking a callback function in the main thread. It’s a straightforward extension which isn’t covered here.
  • Thread safety: This is a vast topic, but the key principle is that data which is potentially accessed by multiple threads must have mutual exclusion enforced on those accesses using a mutex. What data is potentially accessed by multiple threads here? thread1_main_context, which is passed in the fork call to thread1_main; and some_object, a reference to which is passed in the data closure. Critically, GLib guarantees that GMainContext is thread safe, so sharing thread1_main_context between threads is fine. The other code in this example must ensure that some_object is thread safe too, but that’s a topic for another blog post. Note that some_string and some_int cannot be accessed from both threads, because copies of them are passed to thread1, rather than the originals. This is a standard technique for making cross-thread calls thread safe without requiring locking. It also avoids the problem of synchronising freeing some_string. Similarly, a reference to some_object is transferred to thread1, which works around the issue of synchronising destruction of the object.
  • Specificity: g_idle_source_new() was used rather than the simpler g_idle_add() so that the GMainContext the GSource is attached to could be specified.

With those principles and mechanisms in mind, let’s take a look at a convenience method which makes this a whole lot easier: g_main_context_invoke_full().((Why not g_main_context_invoke()? It doesn’t allow a GDestroyNotify function for the user data to be specified, limiting its use in the common case of passing data between threads.)) As stated in its documentation, it invokes a callback so that the specified GMainContext is owned during the invocation. In almost all cases, the context being owned is equivalent to it being run, and hence the function must be being invoked in the thread for which the specified context is the thread default.

Modifying the earlier example, the invoke_my_func() function can be replaced by the following:

static void
invoke_my_func (GMainContext *thread1_main_context,
                const gchar *some_string, guint some_int,
                GObject *some_object)
{
	MyFuncData *data;

	/* Create a data closure to pass all the desired variables
	 * between threads. */
	data = g_slice_new0 (MyFuncData);
	data->some_string = g_strdup (some_string);
	data->some_int = some_int;
	data->some_object = g_object_ref (some_object);

	/* Invoke the function. */
	g_main_context_invoke_full (thread1_main_context,
	                            G_PRIORITY_DEFAULT, my_func_idle,
	                            data,
	                            (GDestroyNotify) my_func_data_free);
}

That’s a bit simpler. Let’s consider what happens if invoke_my_func() were to be called from thread1, rather than from the main thread. With the original implementation, the idle source would be added to thread1’s context and dispatched on the context’s next iteration (assuming no pending dispatches with higher priorities). With the improved implementation, g_main_context_invoke_full() will notice that the specified context is already owned by the thread (or can be acquired by it), and will call my_func_idle() directly, rather than attaching a source to the context and delaying the invocation to the next context iteration. This subtle behaviour difference doesn’t matter in most cases, but is worth bearing in mind since it can affect blocking behaviour (i.e. invoke_my_func() would go from taking negligible time, to taking the same amount of time as my_func() before returning).

How can I be sure a function is always executed in the thread I expect? Since I’m now thinking about which thread each function could be called in, it would be useful to document this in the form of an assertion:

g_assert (g_main_context_is_owner (expected_main_context));

If that’s put at the top of each function, any assertion failure will highlight a case where a function has been called directly from the wrong thread. This technique was invaluable to me recently when writing code which used upwards of four threads with function invocations between all of them. It’s a whole lot easier to put the assertions in when initially writing the code than it is to debug the race conditions which easily result from a function being called in the wrong thread.

This can also be applied to signal emissions and callbacks. As well as documenting which contexts a signal or callback will be emitted in, assertions can be added to ensure that this is always the case. For example, instead of using the following when emitting a signal:

guint param1;  /* arbitrary example parameters */
gchar *param2;
guint retval = 0;

g_signal_emit_by_name (my_object, "some-signal",
                       param1, param2, &retval);

it would be better to use the following:

static guint
emit_some_signal (GObject *my_object, guint param1,
                  const gchar *param2)
{
	guint retval = 0;

	g_assert (g_main_context_is_owner (expected_main_context));

	g_signal_emit_by_name (my_object, "some-signal",
	                       param1, param2, &retval);

	return retval;
}

As well as asserting emission happens in the right context, this improves type safety. Bonus! Note that signal emission via g_signal_emit() is synchronous, and doesn’t involve a main context at all. As signals are a more advanced version of callbacks, this approach can be applied to those as well.

Before finishing, it’s worth mentioning GTask. This provides a slightly different approach to invoking functions in other threads, which is more suited to the case where you want your function to be executed in some background thread, but don’t care exactly which one. GTask will take a data closure, a function to execute, and provide ways to return the result from this function; and will then handle everything necessary to run that function in a thread belonging to some thread pool internal to GLib. Although, by combining g_main_context_invoke_full() and GTask, it should be possible to run a task in a specific context and effortlessly return its result to the current context:

/* This will be invoked in thread1. */
static gboolean
my_func_idle (gpointer user_data)
{
	GTask *task = G_TASK (user_data);
	MyFuncData *data;
	gboolean retval;

	/* Call my_func() and propagate its returned boolean to
	 * the main thread. */
	data = g_task_get_task_data (task);
	retval = my_func (data->some_string, data->some_int,
	                  data->some_object);
	g_task_return_boolean (task, retval);

	return G_SOURCE_REMOVE;
}

/* Whichever thread is invoked in, the @callback will be invoked in
 * once my_func() has finished and returned a result. */
static void
invoke_my_func_with_result (GMainContext *thread1_main_context,
                            const gchar *some_string, guint some_int,
                            GObject *some_object,
                            GAsyncReadyCallback callback,
                            gpointer user_data)
{
	MyFuncData *data;

	/* Create a data closure to pass all the desired variables
	 * between threads. */
	data = g_slice_new0 (MyFuncData);
	data->some_string = g_strdup (some_string);
	data->some_int = some_int;
	data->some_object = g_object_ref (some_object);

	/* Create a GTask to handle returning the result to the current
	 * thread default main context. */
	task = g_task_new (NULL, NULL, callback, user_data);
	g_task_set_task_data (task, data,
	                      (GDestroyNotify) my_func_data_free);

	/* Invoke the function. */
	g_main_context_invoke_full (thread1_main_context,
	                            G_PRIORITY_DEFAULT, my_func_idle,
	                            task,
	                            (GDestroyNotify) g_object_unref);
}

So in summary:

  • Use g_main_context_invoke_full() to invoke functions in other threads, under the assumption that every thread has a thread default main context which runs throughout the lifetime of that thread.
  • Use GTask if you only want to run a function in the background and don’t care about the specifics of which thread is used.
  • In any case, liberally use assertions to check which context is executing a function, and do this right from the start of a project.
  • Explicitly document contexts a function is expected to be called in, a callback will be invoked in, or a signal will be emitted in.
  • Beware of g_idle_add() and similar functions which use the global default main context.

What is GMainContext?

This article has been tweaked and upstreamed to developer.gnome.org. The original is kept below, but future updates will be made there. If you find a problem, please file a bug.

GMainContext is at the core of almost every GLib application, yet it was only recently that I took the time to fully explore it — the details of it have always been a mystery. Doing some I/O work required me to look a little closer and try to get my head around the ins and outs of GMainContext, GMainLoop and GSources. Here I’ll try and write down a bit of what I’ve learned. If you want to skip to the conclusion, there’s a list of key points for using GMainContexts in libraries at the bottom of the post.

What is GMainContext? It’s a generalised implementation of an event loop, useful for implementing polled file I/O or event-based widget systems (i.e. GTK+). If you don’t know what poll() does, read about that first, since GMainContext can’t be properly understood without understanding polled I/O. A GMainContext has a set of GSources which are ‘attached’ to it, each of which can be thought of as an expected event with an associated callback function which will be invoked when that event is received; or equivalently as a set of file descriptors (FDs) to check. An event could be a timeout or data being received on a socket, for example. One iteration of the event loop will:

  1. Prepare sources, determining if any of them are ready to dispatch immediately.
  2. Poll the sources, blocking the current thread until an event is received for one of the sources.
  3. Check which of the sources received an event (several could have).
  4. Dispatch callbacks from those sources.

This is explained very well in the GLib documentation.

At its core, GMainContext is just a poll() loop, with the preparation, check and dispatch stages of the loop corresponding to the normal preamble and postamble in a typical poll() loop implementation, such as listing 1 from http://www.linux-mag.com/id/357/. Typically, some complexity is needed in non-trivial poll()-using applications to track the lists of FDs which are being polled. Additionally, GMainContext adds a lot of useful functionality which vanilla poll() doesn’t support. Most importantly, it adds thread safety.

GMainContext is completely thread safe, meaning that a GSource can be created in one thread and attached to a GMainContext running in another thread. A typical use for this might be to allow worker threads to control which sockets are being listened to by a GMainContext in a central I/O thread. Each GMainContext is ‘acquired’ by a thread for each iteration it’s put through. Other threads cannot iterate a GMainContext without acquiring it, which guarantees that a GSource and its FDs will only be polled by one thread at once (since each GSource is attached to at most one GMainContext). A GMainContext can be swapped between threads across iterations, but this is expensive.

Why use GMainContext instead of poll()? Mostly for convenience, as it takes all the grunt work out of dynamically managing the array of FDs to pass to poll(), especially when operating over multiple threads. This is done by encapsulating FDs in GSources, which decide whether those FDs should be passed to the poll() call on each ‘prepare’ stage of the main context iteration.

So if that’s GMainContext, what’s GMainLoop? Ignoring reference counting and locking gubbins, it is essentially just the following three lines of code (in g_main_loop_run()):

loop->is_running = TRUE;
while (loop->is_running)
	g_main_context_iteration (context, TRUE);

Plus a fourth line in g_main_loop_quit() which sets loop->is_running = FALSE and which will cause the loop to terminate once the current main context iteration ends. i.e. GMainLoop is a convenient, thread-safe way of running a GMainContext to process events until a desired exit condition is met, at which point you call g_main_loop_quit(). Typically, in a UI program, this will be the user clicking ‘exit’. In a socket handling program, this might be the final socket closing.

It is important not to confuse main contexts with main loops. Main contexts do the bulk of the work: preparing source lists, waiting for events, and dispatching callbacks. A main loop just iterates a context.

One of the important features of GMainContext is its support for ‘default’ contexts. There are two levels of default context: the thread-default, and the global-default. The global-default (accessed using g_main_context_default()) is what’s run by GTK+ when you call gtk_main(). It’s also used for timeouts (g_timeout_add()) and idle callbacks (g_idle_add()) — these won’t be dispatched unless the default context is running!

What are the thread-default contexts then? These are a later addition to GLib (since version 2.22), and are generally used for I/O operations which need to run and dispatch callbacks in a thread. By calling g_main_context_push_thread_default() before starting an I/O operation, the thread-default context has been set, and the I/O operation can add its sources to that context. The context can then be run in a new main loop in an I/O thread, causing the callbacks to be dispatched on that thread’s stack rather than on the stack of the thread running the global-default main context. This allows I/O operations to be run entirely in a separate thread without explicitly passing a specific GMainContext pointer around everywhere.

Conversely, by starting a long-running operation with a specific thread-default context set, your code can guarantee that the operation’s callbacks will be emitted in that context, even if the operation itself runs in a worker thread. This is the principle behind GTask: when a new GTask is created, it stores a reference to the current thread-default context, and dispatches its completion callback in that context, even if the task itself is run using g_task_run_in_thread().

For example, the code below will run a GTask which performs two writes in parallel from a thread. The callbacks for the writes will be dispatched in the worker thread, whereas the callback from the task as a whole will be dispatched in the interesting context.

typedef struct {
	GMainLoop *main_loop;
	guint n_remaining;
} WriteData;

/* This is always called in the same thread as thread_cb() because
 * it’s always dispatched in the @worker_context. */
static void
write_cb (GObject *source_object, GAsyncResult *result,
          gpointer user_data)
{
	WriteData *data = user_data;
	GOutputStream *stream = G_OUTPUT_STREAM (source_object);
	GError *error = NULL;
	gssize len;

	/* Finish the write. */
	len = g_output_stream_write_finish (stream, result, &error);
	if (error != NULL) {
		g_error ("Error: %s", error->message);
		g_error_free (error);
	}

	/* Check whether all parallel operations have finished. */
	write_data->n_remaining--;

	if (write_data->n_remaining == 0) {
		g_main_loop_quit (write_data->main_loop);
	}
}

/* This is called in a new thread. */
static void
thread_cb (GTask *task, gpointer source_object, gpointer task_data,
           GCancellable *cancellable)
{
	/* These streams come from somewhere else in the program: */
	GOutputStream *output_stream1, *output_stream;
	GMainContext *worker_context;
	GBytes *data;
	const guint8 *buf;
	gsize len;

	/* Set up a worker context for the writes’ callbacks. */
	worker_context = g_main_context_new ();
	g_main_context_push_thread_default (worker_context);

	/* Set up the writes. */
	write_data.n_remaining = 2;
	write_data.main_loop = g_main_loop_new (worker_context, FALSE);

	data = g_task_get_task_data (task);
	buf = g_bytes_get_data (data, &len);

	g_output_stream_write_async (output_stream1, buf, len,
	                             G_PRIORITY_DEFAULT, NULL, write_cb,
	                             &write_data);
	g_output_stream_write_async (output_stream2, buf, len,
	                             G_PRIORITY_DEFAULT, NULL, write_cb,
	                             &write_data);

	/* Run the main loop until both writes have finished. */
	g_main_loop_run (write_data.main_loop);
	g_task_return_boolean (task, TRUE);  /* ignore errors */

	g_main_loop_unref (write_data.main_loop);

	g_main_context_pop_thread_default (worker_context);
	g_main_context_unref (worker_context);
}

/* This can be called from any thread. Its @callback will always be
 * dispatched in the thread which currently owns
 * @interesting_context. */
void
parallel_writes_async (GBytes *data,
                       GMainContext *interesting_context,
                       GCancellable *cancellable,
                       GAsyncReadyCallback callback,
                       gpointer user_data)
{
	GTask *task;

	g_main_context_push_thread_default (interesting_context);

	task = g_task_new (NULL, cancellable, callback, user_data);
	g_task_set_task_data (task, data,
	                      (GDestroyNotify) g_bytes_unref);
	g_task_run_in_thread (task, thread_cb);
	g_object_unref (task);

	g_main_context_pop_thread_default (interesting_context);
}

From the work I’ve been doing recently with GMainContext, here are a few rules of thumb for using main contexts in libraries which I’m going to follow in future:

  • Never iterate a context you don’t own, including the global-default or thread-default contexts, or you can cause the user’s sources to be dispatched unexpectedly and cause re-entrancy problems.
  • Always remove GSources from a main context once you’re done with them, especially if that context may have been exposed to the user (e.g. as a thread-default). Otherwise the user may keep a reference to the main context and continue iterating it after your code expects it to have been destroyed, potentially causing unexpected source dispatches in your code.
  • If your API is designed to be used in threads, or in a context-aware fashion, always document which context callbacks will be dispatched in. For example, “callbacks will always be dispatched in the context which is the thread-default at the time of the object’s construction”. Users of your API need to know this information.
  • Use g_main_context_invoke() to ensure callbacks are dispatched in the right context. It’s much easier than manually using g_idle_source_new().
  • Libraries should never use g_main_context_default() (or, equivalently, pass NULL to a GMainContext-typed parameter). Always store and explicitly use a specific GMainContext, even if that reduces to being some default context. This makes your code easier to split out into threads in future, if needed, without causing hard-to-debug problems with callbacks being invoked in the wrong context.
  • Always write things asynchronously internally (using the amazing GTask where appropriate), and keep synchronous wrappers to the very top level, where they can be implemented by calling g_main_context_iteration() on a specific GMainContext. Again, this makes future refactoring easier. You can see it in the above example: the thread uses g_output_stream_write_async() rather than g_output_stream_write().
  • Always match pushes and pops of the thread-default main context.

In a future post, I hope to explain in detail what’s in a GSource, and how to implement one, plus do some more in-depth comparison of poll() and GMainContext. Any feedback or corrections are gratefully received!