
Reducing power and bandwidth use in
apps to keep users happy

Philip Withnall
Endless

philip@tecnocode.co.uk

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

25 minutes allocated. 20 minutes for talk, 5 minutes for questions.
Hello, today I’m going to talk about two things you might want to pay
attention to in your apps, how easy it is to do so, and some caveats to
be aware of when implementing them. I’m going to talk about bandwidth
and metered data, and then about power and power saving. For each, I’ll
give the APIs you need to use, and then some examples of how other apps
make use of them.



Networks

Networks can be metered
Metered status is broadcast by the network, or set by the user
Metered networks are generally slow or cost money per unit
data

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Networks

Firstly, let’s talk about metered networks and saving bandwidth. A metered
network is one where there’s some cost per unit data, or some cap on the
amount of data you can use. Generally the metered status is advertised by
the network (using some special DHCP features), but sometimes it isn’t
and has to be set manually by the user. An example of a metered network
would be tethered internet from a phone, or a 4G modem.



Networks

Networks can be metered
Metered status is broadcast by the network, or set by the user
Metered networks are generally slow or cost money per unit
data

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Networks

How can you save data? By downloading less stuff, downloading it less
frequently, or not doing things altogether. For example, your app could
check for updated content less often; not automatically download images
or generate link previews; only download summaries of content and require
the user to explicitly request the full version of something if they want it;
etc.



Metered API

Gio.NetworkMonitor.network-metered

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered API

GLib provides an API for indicating whether the network connection is
metered, as a property, and as a notify signal for when that changes.
You will always want to listen to the signal, as users may change networks
several times during the lifetime of your app’s process.

https://docs.gtk.org/gio/iface.NetworkMonitor.html


Metered API

Gio.NetworkMonitor.network-metered

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered API

So, determining whether the network is metered is as simple as checking a
property and connecting to a signal. Great! So you do that and disable or
throttle some functionality in your app. But what if the user was expecting
that functionality to work? It would be good to give them some feedback.

https://docs.gtk.org/gio/iface.NetworkMonitor.html


Metered UI considerations

Figure: The HIG page on UI feedback patterns20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered UI considerations

The GNOME human interface guidelines (HIG) provide guidance on pat-
terns for feedback to the user. You can read the HIG online. Being on a
metered network is a temporary state, but it can be that way for a while.
It’s also a notable state transition when going from non-metered to me-
tered, or vice-versa. That gives us several options for how to notify the
user.

https://developer.gnome.org/hig/patterns/feedback.html


Metered UI considerations

Figure: The HIG page on notifications20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered UI considerations

Here’s what the HIG has to say about notifications. They’re useful for
when users are looking at another app, and you should be careful to not
needlessly distract the user with them.

https://developer.gnome.org/hig/patterns/feedback/notifications.html


Metered UI considerations

Figure: The HIG page on toasts20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered UI considerations

This is the HIG guidance on toasts. They are useful in the context of
an app, often in response to a user action. They are transient and are
therefore best suited to communicating events rather than states.

https://developer.gnome.org/hig/patterns/feedback/toasts.html


Metered UI considerations

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered UI considerations

The HIG guidance on banners. They are persistent and are used to com-
municate persistent state. They are deliberately attention-grabbing, so
should only be used to communicate important states.



Metered example: Fragments

https://gitlab.gnome.org/World/Fragments/-/merge_
requests/156

Pause torrents when moving onto a metered network
Resume them when moving off the metered network (unless
the user has modified them since)
Display an infobar while metered

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered example: Fragments

Let’s look at an example app which supports changing its behaviour when
on a metered network. Fragments is a torrent client, which might be
running with torrents downloading or seeding in the background. The user
probably doesn’t want to spend their precious metered bandwidth on those
torrents, unless they make an explicit choice to.

https://gitlab.gnome.org/World/Fragments/-/merge_requests/156
https://gitlab.gnome.org/World/Fragments/-/merge_requests/156


Metered example: Fragments

https://gitlab.gnome.org/World/Fragments/-/merge_
requests/156

Pause torrents when moving onto a metered network
Resume them when moving off the metered network (unless
the user has modified them since)
Display an infobar while metered

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered example: Fragments

So, Fragments will detect the state transition for moving from a non-
metered to a metered network, and pause all torrents at that point. Since
the user probably expected those torrents to complete at some point, it
will resume the torrents again when moving from a metered to a non-
metered network, unless the user has explicitly modified the torrents in the
meantime.

https://gitlab.gnome.org/World/Fragments/-/merge_requests/156
https://gitlab.gnome.org/World/Fragments/-/merge_requests/156


Metered example: Fragments

https://gitlab.gnome.org/World/Fragments/-/merge_
requests/156

Pause torrents when moving onto a metered network
Resume them when moving off the metered network (unless
the user has modified them since)
Display an infobar while metered

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered example: Fragments

Throughout all of this, Fragments will show an infobar telling the user that
torrents were disabled because of being on a metered network. The HIG
recommends using infobars to communicate persistent state. To be really
up to date with recommended widgets, this should be a libadwaita banner
rather than a GTK infobar, but infobars are what’s currently in use in the
rest of Fragments. If a banner were used, the explanatory text should be
shorter.

https://gitlab.gnome.org/World/Fragments/-/merge_requests/156
https://gitlab.gnome.org/World/Fragments/-/merge_requests/156


Metered example: Déjà Dup

https://gitlab.gnome.org/World/deja-dup/-/blob/
main/libdeja/Network.vala#L59

Doesn’t begin a backup while on a metered network
. . . unless a preference is set to override this

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered example: Déjà Dup

Another example app is Déjà Dup, a backup program. It can be configured
to back up to a network location, which could use significant amounts of
data. So, if running on a metered network it will delay backups unless
explicitly told to run one by the user. The scheduling is overrideable with
a hidden preference.

https://gitlab.gnome.org/World/deja-dup/-/blob/main/libdeja/Network.vala#L59
https://gitlab.gnome.org/World/deja-dup/-/blob/main/libdeja/Network.vala#L59


Metered example: Déjà Dup

https://gitlab.gnome.org/World/deja-dup/-/blob/
main/libdeja/Network.vala#L59

Doesn’t begin a backup while on a metered network
. . . unless a preference is set to override this

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered example: Déjà Dup

Since Déjà Dup runs in the background and does its backups on a schedule,
the user will almost never see its UI. So the only way to notify the user
that an expected backup has not run due to being on a metered network is
a desktop notification. Déjà Dup tracks when it has most recently notified
the user about a scheduled backup, so it doesn’t emit notifications too
often.

https://gitlab.gnome.org/World/deja-dup/-/blob/main/libdeja/Network.vala#L59
https://gitlab.gnome.org/World/deja-dup/-/blob/main/libdeja/Network.vala#L59


Metered example: Déjà Dup

https://gitlab.gnome.org/World/deja-dup/-/blob/
main/libdeja/Network.vala#L59

Doesn’t begin a backup while on a metered network
. . . unless a preference is set to override this

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Metered example: Déjà Dup

Most apps should not use notifications to tell the user about being on
a metered network. Imagine what would happen if you were running 10
apps which changed their behaviour on a metered network, and they all
emitted a notification when you moved from a non-metered to a metered
network. Notifications need to be well justified (and I think Déjà Dup’s
use is justified).

https://gitlab.gnome.org/World/deja-dup/-/blob/main/libdeja/Network.vala#L59
https://gitlab.gnome.org/World/deja-dup/-/blob/main/libdeja/Network.vala#L59


Power

Traditionally restricted to ‘is the computer on battery?’
Now a wider definition: power saver mode
Can be explicitly enabled by the user in anticipation of being
away from power for a long time

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power

In the second part of the talk, I’d like to talk about power saving. Tradi-
tionally, apps have changed their behaviour based on whether the computer
is on battery power. But now we have a wider definition: is it in ‘power-
saver’ mode. This can be set by being on battery, or by an explicit request
from the user, or by helper software.



Power

Traditionally restricted to ‘is the computer on battery?’
Now a wider definition: power saver mode
Can be explicitly enabled by the user in anticipation of being
away from power for a long time

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power

Apps use power by using computer resources. In general, this means using
the CPU, using large amounts of memory, accessing disk or the network a
lot (particularly if the network is wireless), or just waking up frequently so
the processor can never get into a deeper sleep state. Saving power means
doing less of that, doing it less often, or grouping together things so that
they’re all done at once rather than waking up several times to do several
things.



Power API

Gio.PowerProfileMonitor.power-saver-enabled

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power API

GLib provides an API for indicating whether the computer is in power-saver
mode, and it’s quite similar to the metered data API. It’s a property plus
a notify signal, so all you need to do is read the property and connect to
the signal. You will want to listen to the signal, as the power mode may
change over time.

https://docs.gtk.org/gio/iface.PowerProfileMonitor.html


Power API

Gio.PowerProfileMonitor.power-saver-enabled

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power API

So if you use this API to disable, reduce or change some functionality in
your app – as with metered data – you need to be able to notify the user
somehow.

https://docs.gtk.org/gio/iface.PowerProfileMonitor.html


Power UI considerations

Figure: The HIG page on UI feedback patterns20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power UI considerations

Just as with metered data, the HIG provides guidance on patterns for
feedback to the user. Being in power-saver mode is a temporary state, but
it can be that way for a while. It’s a less notable transition when going
from another power mode to power-saver; it’s more about the state here.
This gives us several options for how to notify the user.

https://developer.gnome.org/hig/patterns/feedback.html


Power UI considerations

Figure: The HIG page on UI feedback patterns20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power UI considerations

As with any of the UI work here, follow the guidance in the HIG as it
applies to your app. If anything seems odd, or isn’t covered by the HIG, or
you want a second opinion, ask on the GNOME design channel on Matrix.

https://developer.gnome.org/hig/patterns/feedback.html
https://matrix.to/#/


Power example: Blanket

Figure: Blanket showing a toast when pausing sounds in power-saver
mode20

23
-0

7-
26

Reducing power and bandwidth use in apps to keep
users happy

Power example: Blanket

(The missing images here are an issue with how I’ve built it, and not an
issue with Blanket.)



Power example: Blanket

https://github.com/rafaelmardojai/blanket/pull/312

Pauses background playback when entering power saver mode
Shows a toast explaining why playback has been paused
In case Blanket’s UI is not visible, this toast doesn’t have a
timeout

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power example: Blanket

Here’s an example of an app which changes its behaviour in power-saver
mode. Blanket is an app to play soothing background sounds, such as
rain or birdsong. When entering power-saver mode, it will pause the back-
ground sounds, as continually doing audio decoding drains power. It will
display a toast in its window to explain why the sounds have stopped, and
the toast contains a button to start playback again.

https://github.com/rafaelmardojai/blanket/pull/312


Power example: Blanket

https://github.com/rafaelmardojai/blanket/pull/312

Pauses background playback when entering power saver mode
Shows a toast explaining why playback has been paused
In case Blanket’s UI is not visible, this toast doesn’t have a
timeout

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power example: Blanket

Blanket’s UI may not be visible (you can close the window and it will
continue playing), so the toast doesn’t have a timeout. If the user wonders
why the sounds have stopped, they will open Blanket’s window, and see the
toast. Another way to implement this would have been as a banner with
a close button, but that’s more of a way to represent an ongoing state,
whereas pausing the sound playback is a transitional change. Blanket
doesn’t re-start playback when the system changes away from power-saver
mode, as suddenly playing sound without user interaction is quite jarring.

https://github.com/rafaelmardojai/blanket/pull/312


Power example: NewsFlash

https://gitlab.com/news-flash/news_flash_gtk/-/
merge_requests/148

Affects whether to enable background syncing of news feeds
Adds to existing logic which disables them on metered
networks
No UI

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power example: NewsFlash

Another example is NewsFlash. This is a feed reader application. When
in power-saver mode, it will disable background refreshing of feeds, saving
on wakeups and network activity. Feeds will still be refreshed if the user
explicitly requests it.

https://gitlab.com/news-flash/news_flash_gtk/-/merge_requests/148
https://gitlab.com/news-flash/news_flash_gtk/-/merge_requests/148


Power example: NewsFlash

https://gitlab.com/news-flash/news_flash_gtk/-/
merge_requests/148

Affects whether to enable background syncing of news feeds
Adds to existing logic which disables them on metered
networks
No UI

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power example: NewsFlash

The logic to implement this also disables refreshing of feeds when on a
metered network. Colocating both of these checks is quite common —
typically measures taken to reduce network data use will also reduce power
consumption.

https://gitlab.com/news-flash/news_flash_gtk/-/merge_requests/148
https://gitlab.com/news-flash/news_flash_gtk/-/merge_requests/148


Power example: NewsFlash

https://gitlab.com/news-flash/news_flash_gtk/-/
merge_requests/148

Affects whether to enable background syncing of news feeds
Adds to existing logic which disables them on metered
networks
No UI

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

Power example: NewsFlash

Since it’s only background refreshes which change behaviour, NewsFlash
doesn’t need to notify the user at all. Seeing updates for their feeds now
vs in a few hours’ time will not really affect them.

https://gitlab.com/news-flash/news_flash_gtk/-/merge_requests/148
https://gitlab.com/news-flash/news_flash_gtk/-/merge_requests/148


What haven’t I covered?

Profile your apps for power usage: reduce wakeups, reduce
spinning
powertop is amazing
Profile your apps for network usage too: nethogs
Gio.MemoryMonitor.low-memory-warning

Don’t use web views or write your app using web technologies
if you can help it, they’re terrible for power use
Occasionally look at your project’s CI resource and GitLab disk
use

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

What haven’t I covered?

There’s a lot of other approaches to improving power and network use
which I haven’t covered. These things can be optimised in general, even
when not on a metered network or in power-saver mode. powertop and
nethogs are useful for seeing when your app is waking up or how much
data it’s using. There are many different techniques for optimising an
application, but they all come down to looking at the app’s behaviour first
and identifying problems.



What haven’t I covered?

Profile your apps for power usage: reduce wakeups, reduce
spinning
powertop is amazing
Profile your apps for network usage too: nethogs
Gio.MemoryMonitor.low-memory-warning

Don’t use web views or write your app using web technologies
if you can help it, they’re terrible for power use
Occasionally look at your project’s CI resource and GitLab disk
use

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

What haven’t I covered?

Also, take a look at Gio.MemoryMonitor. It’s a similar API to the two
I’ve covered today, but for situations where the machine is running low
on memory. In these situations, your app should free up resources which
it doesn’t immediately need (making a CPU/memory/disk tradeoff). I’ve
run out of time to cover this though! Talk to me after for more information
about it.



What haven’t I covered?

Profile your apps for power usage: reduce wakeups, reduce
spinning
powertop is amazing
Profile your apps for network usage too: nethogs
Gio.MemoryMonitor.low-memory-warning

Don’t use web views or write your app using web technologies
if you can help it, they’re terrible for power use
Occasionally look at your project’s CI resource and GitLab disk
use

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

What haven’t I covered?

Another completely different area of resource use is development: we’ve
only covered resource use by users of your app, but sometimes development
resources can be more significant than we think. How often does your CI
run? Does it need to run that often? How many tens of gigabytes of
project data are you storing on GitLab, and is it all necessary? Or has
some of it been forgotten about?



What haven’t I covered?

Profile your apps for power usage: reduce wakeups, reduce
spinning
powertop is amazing
Profile your apps for network usage too: nethogs
Gio.MemoryMonitor.low-memory-warning

Don’t use web views or write your app using web technologies
if you can help it, they’re terrible for power use
Occasionally look at your project’s CI resource and GitLab disk
use

20
23

-0
7-

26
Reducing power and bandwidth use in apps to keep
users happy

What haven’t I covered?

So, if your app uses the internet, please add support for metered data
detection. If it could be changed to do less work when in power-saver
mode, please do that. And in any case, it would be great if you could take
10 minutes to do some quick profiling with powertop and give your CI a
checkup!


