
Slow progress on app save/restore
support

Philip Withnall
Endless

philip@tecnocode.co.uk

20
23

-0
7-

28
Slow progress on app save/restore support

25 minutes allocated. 20 minutes for talk, 5 minutes for questions.
Hello. Today I’m going to talk about where we’re at with app save/restore
support, the architecture being proposed for it, and what’s left to do. I
should probably stifle anyone’s hopes right now: this is not a big reveal talk
in which I show that it’s actually all complete and ready for app authors
to use. It’s a long way from that, but hopefully where we’re at now is
interesting enough to share.

Slow progress on app save/restore
support

Philip Withnall
Endless

philip@tecnocode.co.uk

20
23

-0
7-

28
Slow progress on app save/restore support

This project is something I’ve been working on in periodic free hacking time
at Endless, for a couple of years now. It’s based on work done by Bastien
Nocera a few years ago, and incorporating ideas from Emmanuele Bassi.
As far back as 10 years ago, people were having discussions and ideas about
how to implement this, so there’s a long history of work this builds on. On
the GTK side of things, Matthias Clasen has done some experiments in
the last couple of years with widget tree serialisation/deserialisation, with
the aim of helping implement this feature.

What is app save/restore support?

Reopening an app in the same state as it was when it was
closed
Closing by user action or by system policy
gnome-session used to support a limited version of this in the
olden days

20
23

-0
7-

28
Slow progress on app save/restore support

What is app save/restore support?

Firstly, what is app save/restore support? It is what it says on the tin:
restoring an app to the same state it was in when it was closed, when it’s
next opened. For example, with the same windows showing, in the same
position, with the same list items selected and the same scroll position in
views.

What is app save/restore support?

Reopening an app in the same state as it was when it was
closed
Closing by user action or by system policy
gnome-session used to support a limited version of this in the
olden days

20
23

-0
7-

28
Slow progress on app save/restore support

What is app save/restore support?

This could happen either when you log out and log in again, or when the
system decides to free up resources by killing a process and then transpar-
ently restarting it when you switch focus to it again. Android does this,
but we’re a long way off supporting it.

What is app save/restore support?

Reopening an app in the same state as it was when it was
closed
Closing by user action or by system policy
gnome-session used to support a limited version of this in the
olden days

20
23

-0
7-

28
Slow progress on app save/restore support

What is app save/restore support?

gnome-session used to support a very limited version of app save/restore,
in that it would save the list of apps you had open when logging out, and
start those apps again when you next logged in. The apps would start from
fresh, though, with none of their internal state saved. This was supported
(I believe) until GNOME 3. In particular, when systemd --user support
was added to gnome-session, the save/restore support broke.

Use cases

Restore apps to largely the same state when logging out and in
again
Restore apps to largely the same state if they are killed and
later restarted by the session manager due to resource
constaints
Restore apps to largely the same state if they are updated and
restarted due to an update (e.g. flatpaks)
Allowing apps to choose not to be restored (even if the data is
available) if it would not be appropriate

20
23

-0
7-

28
Slow progress on app save/restore support

Use cases

So I’ve been working on parts of app save/restore on and off for a couple
of years now, in various periods of hacking time provided by my employer,
Endless. The use cases I’ve had in mind are these (I won’t read them out).

Use cases

Not: Allowing apps to checkpoint their state or provide an
undo stack
Not: Allowing apps to be restored if they are killed
unexpectedly, crash, or power is lost

20
23

-0
7-

28
Slow progress on app save/restore support

Use cases

There are also a few things which are explicitly not use cases for this
feature. This is to prevent it ballooning into something which can track
arbitrary app state over time.

Proposed architecture

Shell

Session
manager

Saved
restart data

App

Toolkit

App

Toolkit

App

Toolkit

D-Bus

Figure: Proposed system architecture20
23

-0
7-

28
Slow progress on app save/restore support

Proposed architecture

Overall, it should actually be pretty simple to implement save/restore sup-
port in a single app. It actually only takes changes in the app itself to
serialise and deserialise its state to a file on start and exit. The thing is,
in order to have the app correctly restarted at the start of the session,
you need help from the session manager. And it needs to have a standard
interface to talk to, so you need help from the toolkit. And it would be
helpful for the toolkit to provide a standard interface for serialising/deseri-
alising a widget hierarchy. And then in order to implement the use case for
closing apps when the system is low on memory, you need to know which
app is focused, so the Shell becomes involved. So before you know it, the
project involves four different components (or five if you count GTK and
GLib separately).

Proposed architecture

Extend the session manager protocol
Apps get their restore data when they register with the session
manager
Save their data when the session ends (if they’re still running)
Expose their data on org.gtk.Application as well, so it can
be queried any time
Data is an arbitrary GVariant

20
23

-0
7-

28
Slow progress on app save/restore support

Proposed architecture

For the moment, let’s ignore anything to do with the shell, as that’s not
something I’ve looked at yet. With that out of the way, the core of the
proposed architecture is some changes to the session management D-Bus
API. This is used for apps to communicate with gnome-session, so it knows
what processes are running in the user’s login session. It uses this to move
them to the right cgroup, to tell them when the session is going to end
(and to allow them to inhibit logout/shutdown), and now to get their
save/restore data from them.

Proposed architecture: restoring

Figure: Registering a restartable client on session start

20
23

-0
7-

28
Slow progress on app save/restore support

Proposed architecture: restoring

This is the architecture I’ve ended up with for restoring app state, which
happens on startup. gnome-session will auto-start a list of apps saved from
the last session. When each of them register with the session (historically
via the RegisterClient method), the session manager will now send their
restart data back to them. The app can then deserialise this to restore their
state.

Proposed architecture: restoring

Figure: Registering a restartable client on session start

20
23

-0
7-

28
Slow progress on app save/restore support

Proposed architecture: restoring

This fits in well because the session management API calls happen before
the app shows any UI, and happen already, so this approach adds no
additional D-Bus traffic. Restore data can be loaded from disk once by the
session manager, rather than N times by N apps.

Proposed architecture: restoring

Figure: Registering a restartable client on session start

20
23

-0
7-

28
Slow progress on app save/restore support

Proposed architecture: restoring

The diagram shows a Bustle trace of the D-Bus traffic for the proposed
API. In it, the session manager auto-starts an app, the app registers with
the session manager and receives its restart data, and then its normal
startup process continues.

Proposed architecture: saving

Figure: Saving app state when ending the session20
23

-0
7-

28
Slow progress on app save/restore support

Proposed architecture: saving

The architecture for saving app state is similar. It happens when the session
ends (when the user logs out, shuts down, restarts). The session manager
signals all apps querying whether they’re OK with the session ending. At
this point they have an opportunity to inhibit the session ending, for ex-
ample because they have unsaved documents. Once all documents are
saved, the session manager notifies all apps that the session is ending, and
they respond with EndSessionResponseRestartable, which acknowl-
edges the session ending, and contains their serialised restart data, or a
boolean saying they explicitly don’t want to be restarted on next session
start.

Proposed architecture: saving

Figure: Saving app state when ending the session20
23

-0
7-

28
Slow progress on app save/restore support

Proposed architecture: saving

The EndSessionResponseRestartable call is where this protocol differs
from before, as the restart data has been added to it. As with restoring
an app, this protocol change introduces no new D-Bus calls, and happens
after the app has been notified of session end — so it has opportunity to
prevent the user from interacting with the UI further, and hence there are
no races when saving app state.

Application interface

s t ruct _GApp l i c a t i onC l a s s
{

GVar iant ∗(∗ bu i l d_ r e s t a r t_da t a) (GApp l i c a t i o n
∗ a p p l i c a t i o n ,

char
∗∗ out_tag) ;

void (∗ consume_restart_data) (GApp l i c a t i o n
∗ a p p l i c a t i o n ,

const char
∗ tag ,

GVar iant
∗ data) ;
} ;

20
23

-0
7-

28
Slow progress on app save/restore support

Application interface

The interface between application code and the toolkit is this pair of new
virtual methods on GApplicationClass. The intention is that they could
either be implemented directly by apps (if they want to do their own se-
rialisation) or chained up to GTK (to use its serialisation). In either case,
the app would probably have to explicitly opt in to restart support.

What’s implemented?

Application interface is ready for review in GLib
Session manager API changes ready for initial review
GTK session management changes are the right shape
GTK widget tree serialisation/deserialisation not done
Shell integration not thought about

20
23

-0
7-

28
Slow progress on app save/restore support

What’s implemented?

What’s implemented is basically what I’ve run through so far. I have
enough changes locally to be able to run gnome-session and have it
start gnome-calendar with saved data, then query the calendar for data
at the end of the session and save that. I’m not brave enough to try
and demo that in this talk, so you’ll just have to take my word for it! It
wouldn’t be very exciting anyway, because the exciting visual part would
come from the GTK widget tree serialisation/deserialisation, and none of
that is implemented yet.

Current problem points

Little thought given to non-GNOME desktop, non-GTK apps
Little thought given to XSMP apps
Prototype for GTK serialisation is a few years old and I haven’t
incorporated it
API has to be stable, so it has to be right

20
23

-0
7-

28
Slow progress on app save/restore support

Current problem points

Of the things which have been written so far, there are a few areas which
I think could do with some more thought, which I haven’t done yet. Even-
tually, this should work cross-desktop, cross-toolkit, and degrade nicely
for old apps which don’t support it (even the really old apps which speak
XSMP rather than the D-Bus gnome-session protocol we’ve used for the
last decade plus). So validating the API changes from these points of view
would be useful.

What’s next?

Help to validate the architecture
Come to the GTK BoF session (Saturday, 10:00)!
Landing some initial bits
gnome-session changes
Future work on GTK and Shell

20
23

-0
7-

28
Slow progress on app save/restore support

What’s next?

What’s next? I need your help! If you’re interested in this and can con-
tribute to any of the necessary components, please come to the GTK BoF
session on Saturday. We’ll be discussing app save/restore as part of the
session there.

https://events.gnome.org/event/101/contributions/534/

What’s next?

Help to validate the architecture
Come to the GTK BoF session (Saturday, 10:00)!
Landing some initial bits
gnome-session changes
Future work on GTK and Shell

20
23

-0
7-

28
Slow progress on app save/restore support

What’s next?

In terms of landing things, the GLib changes are ready for review and
hopefully to be landed this cycle. The gnome-session changes are ready
for review, but I expect there will be a lot of comments on them. Partic-
ularly, I’m interested in high-level comments on the D-Bus API changes
at the moment. The GTK changes at the moment are quite minimal and
tightly paired to the gnome-session changes. Perhaps a good way to land
the gnome-session changes would be to gate them behind a configuration
option to begin with, then they could land earlier and get more testing.

https://events.gnome.org/event/101/contributions/534/

What’s next?

Help to validate the architecture
Come to the GTK BoF session (Saturday, 10:00)!
Landing some initial bits
gnome-session changes
Future work on GTK and Shell

20
23

-0
7-

28
Slow progress on app save/restore support

What’s next?

There will need to be a lot of separate work done on serialising/deserialising
widget trees in GTK to make that convenience available for apps. And I
haven’t looked at the Shell changes at all, which is what’s necessary for
killing apps when system resources become scarce.

https://events.gnome.org/event/101/contributions/534/

