
Reworking threading in GNOME
Software

Philip Withnall
Endless

philip@tecnocode.co.uk

20
22

-0
7-

21
Reworking threading in GNOME Software

25 minutes allocated. 20 minutes for talk, 5 minutes for questions.
Hello! In this talk I’m going to cover some changes we’ve been making
to the threading model in gnome-software over the last couple of cycles.
Work on this has been done by Endless and Red Hat. The aim is both to
provide a bit of a progress update for those who are interested in gnome-
software, and to provide some more general ideas about what works, and
what doesn’t work so well, when using threads in a program. I’ll also
briefly cover some thoughts about trying to minimise pain while landing
big changes to a project like this.



History of gnome-software

Project started in 2012
Plugins added in 2013
Architecture has always been entirely plugin based
AppStream support from 2013

20
22

-0
7-

21
Reworking threading in GNOME Software

History of gnome-software

The gnome-software project started ten years ago. I wasn’t around then,
so please correct me if you were there any I get any of this wrong! Right
from the beginning, the architecture has been plugin based. I believe this
was because the idea was to have one or more plugins per distribution, so
that the UI could be shared between distros but it could still function with
different package managers. A lot of the original API design was done with
traditional package managers in mind, as OSTree was only a year old at
the time, and it would be another 2 years before flatpak was started.



History of gnome-software

Project started in 2012
Plugins added in 2013
Architecture has always been entirely plugin based
AppStream support from 2013

20
22

-0
7-

21
Reworking threading in GNOME Software

History of gnome-software

More than just being plugin based, the architecture was entirely plugin
based: gnome-software didn’t do anything without its plugins. AppStream
support, for example, was a plugin. Over time, the decision to standardise
on AppStream turned out to be a better and better one, but the support
for it in gnome-software remained inside a plugin just like everything else.
The plugin is mandatory now.



History of gnome-software

Project started in 2012
Plugins added in 2013
Architecture has always been entirely plugin based
AppStream support from 2013

20
22

-0
7-

21
Reworking threading in GNOME Software

History of gnome-software

(AppStream is a format for providing information about software, such
as its description, screenshots, installation requirements, package for-
mat, etc. It is distribution-agnostic. There’s plenty of documentation
available about it online: https://www.freedesktop.org/software/
appstream/docs/)

https://www.freedesktop.org/software/appstream/docs/
https://www.freedesktop.org/software/appstream/docs/


Previous architecture

Job 1 Job 2

Thread pool threadsMain thread

Ti
m

e

Figure: Previous architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

Previous architecture

In the old architecture of gnome-software, each job (such as refreshing
metadata, getting more details for applications, or installing an app) calls
a function in every plugin. All those functions are run in separate thread
pool threads — so each job requests about 10 thread pool threads, one
for each plugin.



Previous architecture

Job 1 Job 2

Thread pool threadsMain thread

Ti
m

e

Figure: Previous architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

Previous architecture

Plugins are run in a fixed order, defined when gnome-software starts. This
allows them to modify the results returned by earlier plugins. For example,
some plugins, such as the flatpak plugin, will add apps to the list of results
for the job. Later in the job, the icons plugin might go through the in-
progress list of results and download an icon from the internet for each
app, modifying the results list in-place. (This isn’t shown in the diagram
for reasons of space.)



Previous architecture

Job 1 Job 2

Thread pool threadsMain thread

Ti
m

e

Figure: Previous architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

Previous architecture

Each plugin function does its work synchronously (not yielding control of
the thread until it’s finished), and then returns. When all of the plugin
functions have returned, the main thread marks the job as complete and
returns the results to the caller.



Previous architecture

Job 1 Job 2

Thread pool threadsMain thread

Ti
m

e

Figure: Previous architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

Previous architecture

The diagram shows this as a graph of time against threads. Two jobs are
run, and cause 5 threads to be requested from the thread pool.



Previous architecture

Job 1 Job 2

Thread pool threadsMain thread

Ti
m

e

Figure: Previous architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

Previous architecture

I’ve not shown the sequential ordering of plugins in the diagram, as oth-
erwise it would be too tall. However, I have shown serialisation of jobs in
separate threads due to locking inside each plugin (as outline boxes). As
functions can be called on each plugin from multiple thread pool threads,
its internal data structures have to be locked when accessed. This serialises
multiple jobs on the same plugin, delaying subsequent ones until the first
has finished.



Issues

1. Limited number of threads in thread pool leads to exhaustion
(hangs)

2. Large number of threads uses lots of resources (memory)
3. Locking required everywhere causes serialisation (slow)
4. Threading overhead is large for simple jobs (slow)

20
22

-0
7-

21
Reworking threading in GNOME Software

Issues

As the complexity of gnome-software, and the number of plugins, grew, it
became apparent that the architecture didn’t scale well enough. The most
immediate problem was that the number of threads in the thread pool is
limited, and it’s possible to hit a deadlock if the limit is reached and all the
pending threads are waiting on an operation which requires an additional
thread pool thread to complete it. This can happen with OSTree and
flatpak.



Issues

1. Limited number of threads in thread pool leads to exhaustion
(hangs)

2. Large number of threads uses lots of resources (memory)
3. Locking required everywhere causes serialisation (slow)
4. Threading overhead is large for simple jobs (slow)

20
22

-0
7-

21
Reworking threading in GNOME Software

Issues

One solution to that would be to increase the thread pool size limit. But
where do you stop? Every time you increase it, it’s possible to hit the
deadlock after a few more pending operations. The long-term fix is to
decouple the number of threads from the number of pending operations.



Issues

1. Limited number of threads in thread pool leads to exhaustion
(hangs)

2. Large number of threads uses lots of resources (memory)
3. Locking required everywhere causes serialisation (slow)
4. Threading overhead is large for simple jobs (slow)

20
22

-0
7-

21
Reworking threading in GNOME Software

Issues

Another problem with using a lot of threads is that they con-
sume significant resources. While each thread theoretically shares the
full address space with the rest of the process, glibc actually re-
serves 64MB of heap pages privately for each new thread (a per-
thread arena https://www.gnu.org/software/libc/manual/html_
node/Memory-Allocation-Tunables.html, https://siddhesh.in/
posts/malloc-per-thread-arenas-in-glibc.html. It uses these to
speed up heap allocations (malloc() calls) for that thread, by avoiding
locking. This is a good optimisation, but means that the non-shareable
memory use of the process increases by 64MB for each new thread pool
thread. 10 thread pool threads is not uncommon with gnome-software,
which leads to 640MB of additional non-shareable memory use. People
complain about this, which is reasonable, although not much of this mem-
ory ever has to be physically backed.

https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-Tunables.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-Tunables.html
https://siddhesh.in/posts/malloc-per-thread-arenas-in-glibc.html
https://siddhesh.in/posts/malloc-per-thread-arenas-in-glibc.html


Issues

1. Limited number of threads in thread pool leads to exhaustion
(hangs)

2. Large number of threads uses lots of resources (memory)
3. Locking required everywhere causes serialisation (slow)
4. Threading overhead is large for simple jobs (slow)

20
22

-0
7-

21
Reworking threading in GNOME Software

Issues

The third and fourth problems relate to how work is scheduled on threads.
As it turns out, a lot of the work each gnome-software plugin ends up
doing is quite simple and doesn’t require much CPU time. In particular,
several plugins just talk to a daemon over D-Bus, and don’t do any CPU
intensive work themselves.



GDBus threading

Main thread Worker gdbus

Ti
m

e (IPC happens)

Figure: Threading when making a GDBus call20
22

-0
7-

21
Reworking threading in GNOME Software

GDBus threading

In order to do this, they use GDBus. Whenever you make a method call in
GDBus, the calling thread puts together a D-Bus message packet, and then
queues it to a GDBus worker thread provided by GLib. That worker thread
handles communicating with the daemon, and processing replies from it.
So when a gnome-software plugin was making a D-Bus call, a thread pool
thread was being picked, sent a small message about the ongoing job,
which was then doing a small amount of work to turn that into a D-Bus
call, and sending that message on to the GDBus worker thread. Until the
daemon and GDBus worker thread replied, the thread pool thread then
slept and didn’t do any other work.



GDBus threading

Main thread Worker gdbus

Ti
m

e (IPC happens)

Figure: Threading when making a GDBus call20
22

-0
7-

21
Reworking threading in GNOME Software

GDBus threading

This occupied thread pool threads for a relatively long time (the time taken
for the daemon to do whatever it was asked to do, plus the D-Bus round
trip time of on the order of 1ms), while actually spending very little time
using the CPU or other resources. When thread pool threads are a scant
resource, this is not an efficient use of them.



Previous architecture

Job 1 Job 2

Thread pool threadsMain thread

Ti
m

e

Figure: Previous architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

Previous architecture

Recap of the old architecture.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

So this brings us to the new architecture. The key change is that plugins
are now in charge of their own threading model rather than being forced
to use a thread pool thread for each operation.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

This means that some plugins can work entirely in the main thread, without
using any separate threads, as the work they do is light and doesn’t block.
You can see that with this short function call for job 2, now run in the
main thread. Other plugins, which do need to do blocking operations, can
explicitly run their own worker thread (or threads). This also allows them
to set appropriate scheduling priorities for the thread. The appstream and
flatpak plugins do this.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

By using a fixed number of threads per plugin, the problem of exhausting
the thread pool is eliminated — the width of this graph is now bounded.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

The plugins which now operate without a thread no longer need to do any
locking, which means that concurrent jobs on them won’t be serialised and
block each other. Locking and serialisation are still required for the plugins
which have threads, though. That’s unavoidable.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

Using fewer threads also means a reduction in the non-shared memory
footprint of gnome-software. There is still more work to do in this area,
though, as further memory reductions are possible through other changes
to the code unrelated to threading.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

The new way for plugins to make D-Bus calls is to just make them asy-
chronously from the main thread. This means the D-Bus message is as-
sembled in the main thread (which doesn’t take long), enqueued to the
GDBus worker thread (which always exists, provided by GLib), and then
the main thread gets on with other work until there’s a callback from the
GDBus worker with a reply.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

As well as reducing the use of thread pool threads, this makes it very easy
for a plugin to have multiple D-Bus calls in flight at once. Previously, the
easiest way to code a plugin was to serialise D-Bus calls. Parallelising them
may speed up some plugin operations (if the daemon the plugin is talking
to can handle the calls faster in parallel). This is certainly the case in the
PackageKit plugin.



New architecture

Job 1 Job 2 appstream flatpak

Plugin worker threadsMain thread

Ti
m

e

Figure: New architecture of gnome-software20
22

-0
7-

21
Reworking threading in GNOME Software

New architecture

Finally, changing the architecture has allowed us to split plugin jobs up
into one class per job, rather than one generic job class used for all jobs.
For example, there’s now GsPluginJobListApps for querying for apps,
and GsPluginJobRefreshMetadata for refreshing repo metadata. This
makes the code a lot more type safe and hence understandable: rather
than having to remember which job properties apply to each job, the API
specifies it. It also allows expanding the API to expose, for example, job-
specific and more detailed progress reporting in future.



Different approaches to threading in C

Synchronous code always run in a worker thread
Asynchronous code run somewhere
Threading model determined at a high level vs locally

20
22

-0
7-

21
Reworking threading in GNOME Software

Different approaches to threading in C

This is the bit of the talk which is going to be a bit more like a general soft-
ware engineering textbook. What are the trade-offs when writing threading
in C in the GNOME environment? The trade-offs with higher level lan-
guages or with other toolkits might be different, as they provide different
primitives and language constructs which help you in different ways. Using
a higher level or more modern language than C is the best way to go if
you have the choice. But there are various places in GNOME where, due
to the rest of the ecosystem being in C, it is pragmatic to still write new
code in C. In these cases, you basically have the choice between writing
synchronous code to run in a separate thread, or writing asynchronous
code to run somewhere — in the main thread or in a separate thread.



Different approaches to threading in C

Synchronous code always run in a worker thread
Asynchronous code run somewhere
Threading model determined at a high level vs locally

20
22

-0
7-

21
Reworking threading in GNOME Software

Different approaches to threading in C

Writing synchronous code is easy, and it’s easy to read sequentially. As a
result, it’s easier to maintain. Writing asynchronous code requires more
boilerplate in C, and is thus a bit harder to maintain. The main benefit
that asynchronous code provides, however, is that it defines the yield points
in code: where the code needs to block on I/O or other synchronisation,
and hence where it can yield control of the thread to something else for a
while. It’s not possible to define these in synchronous code in C — there
is no yield keyword.



Different approaches to threading in C

Synchronous code always run in a worker thread
Asynchronous code run somewhere
Threading model determined at a high level vs locally

20
22

-0
7-

21
Reworking threading in GNOME Software

Different approaches to threading in C

The fact that its yield points are defined means that asynchronous code
can be run in a worker thread or in the main thread fairly easily. It can be
run synchronously using a trivial async-to-sync wrapper. For that reason,
I think it’s better to define all APIs as asynchronous, even if the initial
implementation of them is written synchronously for ease of development.
(Or: just use a higher level language.)



Different approaches to threading in C

Synchronous code always run in a worker thread
Asynchronous code run somewhere
Threading model determined at a high level vs locally

20
22

-0
7-

21
Reworking threading in GNOME Software

Different approaches to threading in C

gnome-software didn’t do that: its plugin job API was synchronous, and
hence plugins didn’t have the choice of running in the main thread. They
were all bound to always being run in thread pool threads. And while that
allowed for fast development and linear code, it committed the code to
high thread use. It’s worth noting that a lot of these asynchronous coding
patterns were refined since gnome-software was written, so gnome-software
is basically just a victim of its age.



Different approaches to threading in C

Synchronous code always run in a worker thread
Asynchronous code run somewhere
Threading model determined at a high level vs locally

20
22

-0
7-

21
Reworking threading in GNOME Software

Different approaches to threading in C

Further reading about threads and, in particular, their interac-
tions with main contexts, is here: https://developer.gnome.org/
ExtractShell/documentation/tutorials/threading.html.

https://developer.gnome.org/ExtractShell/documentation/tutorials/threading.html
https://developer.gnome.org/ExtractShell/documentation/tutorials/threading.html


Approaches for landing big changesets

Land early
Keep things working
Keep adapter wrappers around old code and drop it eventually

20
22

-0
7-

21
Reworking threading in GNOME Software

Approaches for landing big changesets

So how have we gone about landing these changes? From my point of
view, development has worked very well. Others might give you a different
perspective though. This series of changes to gnome-software is quite large
— we’re now up to about 30 merge requests. One thing that seems to
have worked well is to land smallish chunks of work fairly often, and keep
close to main.



Approaches for landing big changesets

Land early
Keep things working
Keep adapter wrappers around old code and drop it eventually

20
22

-0
7-

21
Reworking threading in GNOME Software

Approaches for landing big changesets

By keeping merge requests small, they’ve been easier to review, and have
had minimal merge conflicts. The code which has landed early has been
tested in main for longer, and bugs which have been found in it have
informed subsequent development.



Approaches for landing big changesets

Land early
Keep things working
Keep adapter wrappers around old code and drop it eventually

20
22

-0
7-

21
Reworking threading in GNOME Software

Approaches for landing big changesets

The downside to this is that old code – which we’re trying to replace –
hangs around for longer and gets gnarlier: 30 merge requests into the
refactor, the GsPluginLoader code has gained a load of new exceptions
to interface it with the new code, and only a few parts of the old code
have been dropped at this point. You don’t get the pleasure of seeing a
huge diffstat for all the changes.



Approaches for landing big changesets

Land early
Keep things working
Keep adapter wrappers around old code and drop it eventually

20
22

-0
7-

21
Reworking threading in GNOME Software

Approaches for landing big changesets

The other advantage of landing smaller chunks of work often is that it
allows the work to be split up, with multiple people contributing different
parts of the refactor in parallel at times.



Approaches for landing big changesets

Land early
Keep things working
Keep adapter wrappers around old code and drop it eventually

20
22

-0
7-

21
Reworking threading in GNOME Software

Approaches for landing big changesets

A big thank you to Milan Crha, Georges Neto and everyone else who’s been
involved in doing and reviewing the threading rework in gnome-software.
It’s very much been a collaborative project.


