
GLib: What’s new and what’s next?

Philip Withnall
Endless Mobile

philip@tecnocode.co.uk

20
18

-0
7-

06
GLib: What’s new and what’s next?

25 minutes allocated. 15 minutes for talk, 10 minutes for questions.
Hello. This is going to be a talk in which I present a lot of work done by
other people.



Overview of the last year

Covering releases 2.55.0 to 2.57.x
2017-11-05 to today

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

I’ll start by giving a quick overview of what’s happened in the year(ish),
from the 2.55.0 release (the start of the previous development cycle) to
now. We’re at the 2.57.2 release now.



Overview of the last year

Meson migration: feature parity

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

The Meson port started in the 2.53.4 release. It’s now reached rough
feature parity with the autotools build. I’ll give more details later about
the future plans for removing autotools and switching entirely to Meson.
Xavier Claessens and Nirbheek Chauhan deserve a lot of credit for doing
the work here.



Overview of the last year

Move to GitLab brings easier contributions
(since May 2018)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

As some may have noticed, GNOME has ported to GitLab, which has
simplified the contribution process for GLib quite a lot. More on that
later. Many thanks to Carlos Soriano for that.



Overview of the last year

GitLab CI means much better cross-platform support
(since 2.56.0)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

One of the big things GitLab brings is easy continuous integration (CI).
Since the 2.56.0 release, we’ve gone from GLib being tested with make
check whenever the maintainers remember to run it locally — to having
most of the tests run on multiple platforms for every merge request
(MR), and not allowing merges if the tests fail.
Some tests are still known to fail on some platforms, and there’s still a
fair amount of work to do to clean things up, but this is a huge
improvement. It’s already caught platform regressions which would
otherwise have been missed for a year.



Overview of the last year

CI code coverage means incrementally better testing
(since 2.57.1)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

As part of the CI, we generate code coverage reports, and can use those
to request changes to MRs which aren’t adequately tested.
A lot of this stuff is textbook ‘how to use GitLab properly’, but it makes
a proportionally bigger difference to GLib because we need to support
platforms which the maintainers don’t have regular access to (Windows,
macOS, *BSD), and we have a large API surface area to not regress on.



Overview of the last year

75 documentation fixes

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

GLib’s documentation has never been its strongest point. We’ve merged
a lot of small documentation fixes from a number of contributors recently,
a lot of which had been languishing in Bugzilla for years. This doesn’t
make the documentation perfect, but it’s a step in the right direction.
Submitting a documentation patch (or filing an issue about some
documentation which is missing, unclear, or wrong) is a great way to
make an easy and useful contribution to GLib.



Overview of the last year

Oldest bug fixed: Bug 111848 — function to
canonicalize file names
(JFDIed by Georges Basile Stavracas Neto!)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

The oldest bug fixed recently dated from 2003, so was well on the way to
legally being an adult before Georges squashed it. Thanks Georges!

https://bugzilla.gnome.org/show_bug.cgi?id=111848


Overview of the last year

Current code review delay: about 2 hours

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

One of the nice features of GitLab is that it gives you stats which you
can gamify development with. We don’t actually review all MRs in 2
hours: it’s more like a bimodal distribution where small MRs get merged
within the hour, and larger ones hang around for a few days — but it’s
an eye-grabbing statistic!



Overview of the last year

Figure: GitLab cycle analytics (via GitLab, as of 2018-07-03)20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

Here are those cycle analytics. As we move through a couple of
development cycles with GitLab, we’ll get more accurate statistics, and
the planning statistics will start to be calculated.

https://gitlab.gnome.org/GNOME/glib/cycle_analytics


Overview of the last year

We dropped Perl!
(Thanks Emmanuele and Christoph!)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Overview of the last year

GLib used to use Perl for various of its tools (like glib-mkenums) and
parts of the build process. Now we don’t! We decided to do this because
nobody wants to work in Perl any more, and because if we’re switching
to Meson, we pick up a required Python dependency — so might as well
use that instead of Perl.
Thanks to Emmanuele for starting the process, and Christoph Reiter for
completing it.



Various new APIs

g_clear_handle_id() (Cosimo Cecchi)
g_file_load_bytes() (Christian Hergert)
g_date_time_new_from_iso8601() (Robert Ancell)
g_file_new_build_filename() (Cosimo Cecchi)
g_file_peek_path() (Colin Walters)
g_time_zone_get_identifier(),
g_date_time_get_timezone() (Philip Withnall)
g_hash_table_steal_extended() (Philip Withnall)
g_ptr_array_steal_index∗() (Philip Withnall)
G_APPROX_VALUE, g_assert_cmpfloat_with_epsilon()
(Emmanuele Bassi)
g_ref_count_∗(), g_atomic_ref_count_∗() (Emmanuele
Bassi)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Various new APIs

There have been over 220 changes since 2.57.1 (it’s about time to make
a 2.57.2 release). Here highlights of the most interesting of those
changes to users of GLib, starting with the new APIs.

• g_clear_handle_id() — A clear function for integer handles, such
as GSource IDs or bus name IDs.

• g_file_load_bytes() — Load a GFile into a GBytes.

• g_date_time_new_from_iso8601() — Parse an ISO-8601 string
into a GDateTime.

• g_file_new_build_filename() — A combination of
g_build_filename() and g_file_new_for_path().

• g_file_peek_path() — A version of g_file_get_path() which
returns a const value.



Various new APIs

g_clear_handle_id() (Cosimo Cecchi)
g_file_load_bytes() (Christian Hergert)
g_date_time_new_from_iso8601() (Robert Ancell)
g_file_new_build_filename() (Cosimo Cecchi)
g_file_peek_path() (Colin Walters)
g_time_zone_get_identifier(),
g_date_time_get_timezone() (Philip Withnall)
g_hash_table_steal_extended() (Philip Withnall)
g_ptr_array_steal_index∗() (Philip Withnall)
G_APPROX_VALUE, g_assert_cmpfloat_with_epsilon()
(Emmanuele Bassi)
g_ref_count_∗(), g_atomic_ref_count_∗() (Emmanuele
Bassi)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Various new APIs

• g_time_zone_get_identifier(), g_date_time_get_timezone() —
Ways to get more information about timezones.

• g_hash_table_steal_extended() — A version of
g_hash_table_steal() which actually returns the stolen key and
value to the caller.

• g_ptr_array_index∗() — Steal the pointer at the given index from
the array and return it.

• G_APPROX_VALUE, g_assert_cmpfloat_with_epsilon() — A
version of g_assert_cmpfloat() with an epsilon.

• g_ref_count_∗(), g_atomic_ref_count_∗() — Reference
counting primitives for use in your own structs, rather than
reinventing your own reference counting.



Bigger changes

get_type() performance improvements (Christian Hergert)
Drop Visual Studio projects — we use Meson for building on
Windows now (Chun-wei Fan)
Add interface generation mode to gdbus-codegen (Philip
Withnall)
Bash completion for gio tool (Ondrej Holy)
posix_spawn() support (Daniel Drake)
Per-desktop overrides for GSettings schemas (Alberts
Muktupāvels, Allison Lortie)
Android API level 28 support (Xavier Claessens)20

18
-0

7-
06

GLib: What’s new and what’s next?

Bigger changes

Here are some of the bigger changes since 2.55.0 which don’t result in
new API in GLib:

Content type fixes Various fixes to make GContentType integrate better
with macOS.

Static linking support GIO modules can now be statically linked into a
build.

typeof() fixes Improved compile time type checking with
g_object_ref().

Windows network monitor An implementation of GNetworkMonitor on
Windows.

GBytes performance Fewer copies when taking slices of a GBytes.

Nominative case month names Some Slavic languages change the case
of month names when they’re given together with a day.
We now support that when formatting dates.



Bigger changes

get_type() performance improvements (Christian Hergert)
Drop Visual Studio projects — we use Meson for building on
Windows now (Chun-wei Fan)
Add interface generation mode to gdbus-codegen (Philip
Withnall)
Bash completion for gio tool (Ondrej Holy)
posix_spawn() support (Daniel Drake)
Per-desktop overrides for GSettings schemas (Alberts
Muktupāvels, Allison Lortie)
Android API level 28 support (Xavier Claessens)20

18
-0

7-
06

GLib: What’s new and what’s next?

Bigger changes

Splice performance Larger buffer sizes give improved splice performance
for NFS.

kqueue file monitor A complete rewrite of the kqueue file monitor for
*BSD to improve performance and correctness, and
eliminate code.

get_type() performance Optimisations on the fast path in get_type()
functions to reduce overhead.

Visual Studio We’ve dropped our Visual Studio solution files, as all the
GLib Windows developers are now using Meson to
generate them.

GDBus interface generation gdbus-codegen can now generate just
header files containing interface descriptions.

gio bash completion Bash completion support for the gio utility.



Bigger changes

get_type() performance improvements (Christian Hergert)
Drop Visual Studio projects — we use Meson for building on
Windows now (Chun-wei Fan)
Add interface generation mode to gdbus-codegen (Philip
Withnall)
Bash completion for gio tool (Ondrej Holy)
posix_spawn() support (Daniel Drake)
Per-desktop overrides for GSettings schemas (Alberts
Muktupāvels, Allison Lortie)
Android API level 28 support (Xavier Claessens)20

18
-0

7-
06

GLib: What’s new and what’s next?

Bigger changes

posix_spawn() support The g_spawn_∗() functions now support a
fast path which uses posix_spawn() rather than
fork ()+exec(), given some preconditions.

GSettings overrides Override files for GSettings keys can now be
customised for different desktops.

Android API We support Android API level 28; more generally, we now
have more testing against Android.



Who’s contributed?

Figure: GLib contribution affiliation since 2.55.0 (29 affiliands, 936
commits, via git shortlog, as of 2018-07-03)20

18
-0

7-
06

GLib: What’s new and what’s next?

Who’s contributed?

I think the affiliation of the contributors to a project is a quick way of
assessing the health of the project, in terms of bus factor. I tried to work
out the affiliation of each contributor since 2.55.0. ‘Unaffiliated’ means
it’s most likely a contribution in someone’s personal time. ‘Unknown’
means it could be a corporate or personal contribution. About 25% of
our contributions are unaffiliated, and about 15% are unknown. 90% of
contributions are either from Endless, unaffiliated, unknown, Collabora or
Red Hat.
The maintainers (Matthias, Emmanuele and me) are from Red Hat,
unaffiliated, and Endless; which I think is a fairly safe state to be in.



Development activity

Figure: Commit count since 2013 (via GitLab, as of 2018-07-05)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Development activity

I thought it would be interesting to look at how development activity has
changed over time. Here we have a graph of commits per year. I don’t
think it’s relevant to look at the older years (since people didn’t split
commits up properly, etc.). What’s interesting is that we’ve got almost
as many commits so far in 2018 as we had in all of 2017, and already
more than in 2016 or 2015.
This second graph is from GitLab, and while it’s a little harder to see the
difference, it does look like the commit density in 2018 has increased
compared to 2017.

https://gitlab.gnome.org/GNOME/glib/graphs/master


Bug count before GitLab

Figure: Open bug count on Bugzilla, as of 2018-07-0520
18

-0
7-

06
GLib: What’s new and what’s next?

Bug count before GitLab

Here’s a chart of the number of open bugs, from Bugzilla, up to the
present. The massive drop off at the end is our transition to GitLab.
There was a fairly big effort to triage and close old bugs in the second
half of 2017, in preparation for migrating to GitLab. Since then, things
have calmed down a bit.
Unfortunately, GitLab doesn’t provide a similar chart (as far as I know).
We’re currently at around 1300 issues.

https://bugzilla.gnome.org/chart.cgi?category=glib&subcategory=-All-&name=1536&label0=All+Open&line0=1536&datefrom=2016-06-01&dateto=2018-06-01&action-wrap=Chart+This+List


CI charts

Figure: Successful (green) vs total CI pipelines in the last year (via
GitLab, as of 2018-07-05)

20
18

-0
7-

06
GLib: What’s new and what’s next?

CI charts

GitLab does provide lots of charts of the CI system, though. Here we’ve
got a look at how long each of the last 30 commits has taken to build
and test in CI. We average around 15 minutes, which isn’t great, but
there are probably some easy improvements to make about not
downloading dependencies on each build.
The second chart shows the successful CI builds (green) against the total,
so the difference is the number of failed builds. We have had a lot of
builds fail due to the infamous GitLab rackattack ban, but that’s recently
(hopefully?) been fixed, so hopefully this graph will improve a little.
In any case, CI failures have not been a major obstacle to development.

https://gitlab.gnome.org/GNOME/glib/pipelines/charts


What’s next?

Planning will happen properly in the BoF, all day tomorrow,
room 2
GError improvements? (Issue #14)
Improved I/O streams API? (Issue #1431)
Improved platform support; *BSD CI? (various issues)
Complete port to Meson (‘Meson’ label)
Dropping our Unicode tables? (Issue #1333)
Work out what to do with GSlice? (Issue #1079)
libglib-testing: Separate library with utilities for testing code
which uses GLib20

18
-0

7-
06

GLib: What’s new and what’s next?

What’s next?

So what’s planned next? Nothing is planned concretely — that’s going to
happen in the birds of a feather (BoF) session all day tomorrow. Anyone
with a stake in GLib is welcome to pop in, or to talk to me about it
beforehand.
The list of ideas here are what I am personally thinking about putting
forward for the 2.60 release.

GError People have been asking for ways to extend GError for a
while; this deserves some thought.

I/O streams Improvements to the I/O stream APIs to support
zero-copy transfers where possible, and improve end-of-file
handling and blocking notification.

Platform support Additions and improvements to our CI builders; fixing
various tests on non-Linux platforms and enabling tracking
test failures instead of ignoring them.

https://gitlab.gnome.org/GNOME/glib/issues/14
https://gitlab.gnome.org/GNOME/glib/issues/1431
https://gitlab.gnome.org/GNOME/glib/issues?label_name%5B%5D=Meson
https://gitlab.gnome.org/GNOME/glib/issues/1333
https://gitlab.gnome.org/GNOME/glib/issues/1079


What’s next?

Planning will happen properly in the BoF, all day tomorrow,
room 2
GError improvements? (Issue #14)
Improved I/O streams API? (Issue #1431)
Improved platform support; *BSD CI? (various issues)
Complete port to Meson (‘Meson’ label)
Dropping our Unicode tables? (Issue #1333)
Work out what to do with GSlice? (Issue #1079)
libglib-testing: Separate library with utilities for testing code
which uses GLib20

18
-0

7-
06

GLib: What’s new and what’s next?

What’s next?

Meson port Finishing off the Meson port and dropping autotools (see
the following slide).

Unicode tables Potentially dropping our internal Unicode tables in favour
of platform-wide ones which are almost universally
installed and loaded already.

GSlice Potentially dropping GSlice, since other allocators have
improved since it was written.

libglib-testing Providing more standard test harnesses for code written
using GLib. For example, a standard way of testing object
property implementations, or I/O streams.

https://gitlab.gnome.org/GNOME/glib/issues/14
https://gitlab.gnome.org/GNOME/glib/issues/1431
https://gitlab.gnome.org/GNOME/glib/issues?label_name%5B%5D=Meson
https://gitlab.gnome.org/GNOME/glib/issues/1333
https://gitlab.gnome.org/GNOME/glib/issues/1079


Meson timeline

2.57.2 release will be made with ninja dist

Distributions should still build with autotools (unless you want
to dogfood early)
2.57.3+: we will recommend to build with Meson by default

(i.e. autotools and Meson will be available in parallel for all
2.57.x and 2.58.x releases)

2.59.0+: autotools will be dropped upstream
Some platforms default to Meson already (Windows)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Meson timeline

1. Starting from 2.57.2, create release tarballs with ‘ninja dist‘, but
recommend that distributions still build with autotools (unless they
want to dogfood with Meson early).

2. From 2.57.3, switch to recommending that distributions build with
Meson.

3. Starting from 2.59.0 (the actual start of next dev cycle), drop
autotools completely; assuming that steps 1 and 2 have gone OK.



Meson timeline

2.57.2 release will be made with ninja dist

Distributions should still build with autotools (unless you want
to dogfood early)
2.57.3+: we will recommend to build with Meson by default

(i.e. autotools and Meson will be available in parallel for all
2.57.x and 2.58.x releases)

2.59.0+: autotools will be dropped upstream
Some platforms default to Meson already (Windows)

20
18

-0
7-

06
GLib: What’s new and what’s next?

Meson timeline

I want to make sure that distributions only start building GLib using
Meson for their unstable/development releases, rather than for stable
releases. There have only recently been bugs about code which was
compiled with autotools not being built with Meson (the FAM file
monitor comes to mind), which doesn’t give me enough confidence to
jump to recommending building with Meson right yet.
Note that on some platforms, we may drop support for autotools early.
Notably the maintainers of the GLib builds on Windows have already
fully switched to Meson, and there is a merge request open about making
configure error out on Windows.
I could imagine the same happening for other platforms where we’re in
direct contact with the small set of packagers for those platforms (for
example, MacPorts and the *BSDs).



How do I get involved?

#gtk+ on irc.gnome.org
Pick up an issue on GitLab and play around with it — post
comments with your progress or questions
Suggest new convenience API to us, after prototyping it in
your project

20
18

-0
7-

06
GLib: What’s new and what’s next?

How do I get involved?

Talk to us! GLib apparently has a reputation for being big and scary. It
might be big, but it’s just code. We’d be happy to see your contributions
and get them accepted.


